miRNA-145 inhibits VSMC proliferation by targeting CD40
نویسندگان
چکیده
Recent studies have demonstrated functions of miR-145 in vascular smooth muscle cells (VSMCs) phenotypes and vascular diseases. In this study, we aim to determine whether CD40 is involved in miR-145 mediated switch of VSMC phenotypes. In cultured VSMCs, the effects of miR-145 and CD40 on TNF-α, TGF-β, and Homocysteine (Hcy) induced cell proliferation were evaluated by over-expression of miR-145 or by siRNA-mediated knockdown of CD40. We also used ultrasound imaging to explore the effect of miR-145 on carotid artery intima-media thickness (CIMT) in atherosclerotic cerebral infarction (ACI) patients. The results showed 50 ng/mL TNF-α, 5 ng/mL TGF-β, and 500 μmol/L Hcy significantly increased the expression of CD40, both at mRNA and protein levels, and also induced the proliferation of VSMCs. We found that over-expression of miR-145 significantly inhibited the expression of CD40 and the differentiation of VSMCs, and over-expression of miR-145 decreased IL-6 levels in VSMC supernatants. In ACI patients, the lower expression of miR-145 was associated with thicker CIMT and higher levels of plasma IL-6. Our results suggest that the miR-145/CD40 pathway is involved in regulating VSMC phenotypes in TNF-α, TGF-β, and Hcy induced VSMCs proliferation model. Targeting miR-145/CD40 might be a useful strategy for treating atherosclerosis.
منابع مشابه
Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?
Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, diffe...
متن کاملCALL FOR PAPERS MicroRNA and Tissue Injury Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?
Albinsson S, Sessa WC. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury? Physiol Genomics 43: 529–533, 2011. First published September 14, 2010; doi:10.1152/physiolgenomics.00146.2010.—Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNA...
متن کاملMechanical Stretch Suppresses microRNA-145 Expression by Activating Extracellular Signal-Regulated Kinase 1/2 and Upregulating Angiotensin-Converting Enzyme to Alter Vascular Smooth Muscle Cell Phenotype
Phenotype modulation of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of various vascular diseases, including hypertension and atherosclerosis. Several microRNAs (miRNAs) were found involved in regulating the VSMC phenotype with platelet-derived growth factor (PDGF) treatment, but the role of miRNAs in the mechanical stretch-altered VSMC phenotype is not clear...
متن کاملSmall molecule-mediated induction of miR-9 suppressed vascular smooth muscle cell proliferation and neointima formation after balloon injury
Pathologic proliferation and migration of vascular smooth muscle cells (VSMCs) exacerbate cardiovascular disease. MicroRNAs (miRNAs), as endogenous inhibitors of protein synthesis, are expected to modulate pathologic proliferation of VSMCs. Here we report that both platelet-derived growth factor receptor (PDGFR) targeting miR-9 and a small molecule that increases miR-9 can inhibit the serum-ind...
متن کاملMicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1.
AIMS Aberrant vascular smooth muscle cell (VSMC) proliferation and migration contribute significantly to the development of vascular pathologies, such as atherosclerosis and restenosis. MicroRNAs have recently emerged as critical modulators in cellular processes and the purpose of this study is to identify novel miRNA regulators implicated in human aortic VSMC proliferation and migration. MET...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016